Washington University in St. Louis

QPATH E

For EVERY exam (including incomplete & educational exams)

- Write a note in QPATH E
- Show the saved images/clips to an attending so they can attest to the exam

At the US Machine

- END the exam
- Exams will archive to QPATH automatically if machine is charged.
- You can check to see if your scan archived under Review: Patient List. Look for the file cabinet icon

bjc.qpath.cloud

- Login with WUSTLKey
- Select the exam
- EDIT: Check exam info
- EDIT: Select Exam Type
- IMAGE OPERATIONS: split exam or export

	04000	0/04/10/3				
Please enter your search or	iteria here					Q =
DATE : DATIEN :	Indicator :	FULL NAME :	EXAM TYPE	OPERATOR	ATTENDING :	SIGNATO
0021-08-24	-		ROCUS Car			
2021-08-24	-		POCUS Car			
2021-08-24	w A A		PULUS OB Tr	Rosenthal,	SELTZE	
2021-08-24			POCUS Car	Rosenthal		
2021-08-24	88		POCUS Car	Lothet, E	NAUN	Lot
2021-08-24	3 ♣ 🖓 🗐 🏦		POCUS Car		HOLTH	н
2021-08-24	3		POCUS OB	Rees, Ryan	NAUN	
2021-08-24	4		Abdominal			
2021-08-24	₩ & 8 0 0		POCUS Car	Varasteh,	HOLTH	Р но
2021-08-24	\$ 9		POCUS Retr			Hi
2021-08-24	- & & V		POCUS Ven	Baldeshw	HOLTH	Ba
2021-08-24			POCUS Soft			
2021-08-23	K A 7 🛛 🗎		POCUS Car	Varasteh,	HOLTH	но
2021-08-23			POCUS Car	Ruggeri, J	MORK	Ru

Writing a note

- EDIT: Select Exam Type
- Note is the center column
- SELECT Diagnostic or Education
- SIGN at the bottom

Other

- •Off service notes must be written by attending
- In QPath, exams can be merged with the EPIC chart using EDIT: Change Patient
- For procedures
 - EDIT: Exam Type Procedural Guidance
 - Mark Diagnostic
 - Sign the note
 - Fill out procedure note in EPIC

Sonosite X-porte

For EVERY exam (including incomplete & educational exams)

- Writé a note in QPATH E
- Show the saved images/clips to an attending so they can attest to the exam

Sonosite LX

For EVERY exam (including incomplete & educational exams)

- Write a note in QPATH E
- Show the saved images/clips to an attending so they can attest to the exam

Washington University in St. Louis

SCHOOL OF MEDICINE

ΔST Exam Images: https://www.yale.edu/imaging/echo_atlas/contents/index.html

- Curvilinear probe
- Abdominal exam preset
- Obtain 4 views below
- May need multiple clips of each view for complete exam

- Objectives
 - Rule out effusion/tamponade
 - Rule out free peritoneal fluid
 - Very sensitive if all views adequately obtained

- Splenorenal interface space
- Inferior pole of L kidney

- Look all around bladder for free fluid

Basic Echo Images: https://www.yale.edu/imaging/echo_atlas/contents/index.html

Parasternal Long

- Evaluate MV, View AV
- Compare RVOT, AV, LA size
- Eval global systolic function
 - Measure EPSS

- Phased array (square probe)
- Cardiac exam preset
- Obtain 4 views below
- IVC view/compressibility optional
- Objectives
 - ID effusion/tamponade
 - Eval cardiac activity in arrest
 - Eval LV function

Parasternal Short

- Evaluate septum for signs of RV strain
- Look for focal wall motion abnormality

Subxiphoid

- Put hand on top of probe
- Pericardial effusion
- Good in cardiac arrest

Apical 4-Chamber

- Compare LV:RV size
 - Normal ratio is 1:0.6
- View MV, TV
- Eval apical free wall motion
- Eval interventricular septum

Renal

- Curvilinear probe
- Abdominal Exam preset
- Obtain long & short axis scans of both kidneys
- Obtain sagittal and transverse scans of bladder
- Objectives
 - Evaluate for hydronephrosis/obstruction
 - Calculate bladder volume
 - Note any other findings (eg.stones, cysts)

Renal Anatomy

Hydronephrosis classification

Bladder volume

- Measure AP and width in transverse axis.
- Measure longest height in sagittal axis

Volume = Length x width x height x 0.72

- Lung
- Washington University in St. Louis Linear (sliding) and/or curvilinear (b-lines) probe
 - Lung preset
 - Obtain clips in multiple locations (see below)
 - Make sure to label left and right!

Locations

- Indicator towards head
- Scan in multiple locations
 - Mid-clavicular line
 - Mid axillary line
 - Lung base (diaphragm)
 - Multiple rib spaces in each location
- Superficial/linear
 - Lung sliding
- Deep/curvilinear
 - B-lines, effusion

Curvilinear probe: Deeper lung fields

- A-lines-Parallel to pleural line
 - Normal reverb artifact
- B-lines=start at pleural line, extend through entire lung field (15-18cm)
 - Obliterate A-lines
 - >3/rib space=Interstitial fluid (Usually pulmonary edema)

Linear probe: Pleural line

- +lung sliding=no PTX (very sensitive)
- M-mode: graphing 1 line of b-mode over time Should see motion in lung (sandy beach sign)

Transition point=pneumothorax

- Point where lung sliding comes in and out of view
- Very sensitive and specific for ptx

Objectives

- Rule out pneumothorax (high sensitivity)
- Evaluate for b-lines, consolidation, effusion
- Can be part of extended FAST exam

- Curvilinear probe
- Abdominal preset
- Measure proximal, mid and distal aorta in short axis
- Obtain clip through bifurcation into iliac arteries
- Must visualize entire aorta!

IVC

Aorta

Vertebral Body

- Objectives
 - Rule out aneurysm (very sensitive)
 - Normal aorta width <3cm
 - Can sometimes find clot or dissection

- Find aorta, IVC and vertebral body in upper abdomen
- Use slow gentle pressure to push bowel gas aside
- Differentiate IVC and aorta with color/doppler
- Sometimes long axis view can help as well
- Landmarks include celiac, SMA, bifurcation

- AKA seagull sign
- Good proximal measurement

- Level of SMA
- Good mid measurement
- Look for landmarks to differentiate SMA from Aorta
- Measure aorta in 3 different places in SHORT axis
- Try to measure in both axes BUT-
- Always measure A-P, outer wall to outer wall

- Curvilinear probe
- Abdominal preset
- Obtain transverse and long axis scans through gall bladder
- Obtain anterior wall measurement and CBD diameter measurement

- Objectives
 - Identify cholelithiasis
 - Evaluate for cholecystitis (see below)

To help find gallbladder

- Place patient in LL decubitus
- Scan along inferior liver edge
- Can try cardiac probe over ribs

Concerning for cholecystitis:

- pericholecystic fluid
- + Murphy's sign
- +gallstones
- Have patient hold a deep breath gallbladder distention >5cm anterior GBW>0.4cm

- •Measure anterior GBW: freeze, zoom in and measure
 - Note portal triad anatomy deep to gall bladder

- Fan through CBD horizontally and longitudinally
- Put color/doppler on image to differentiate vessels
- Borderline common bile duct diameter: 6mm (inner to inner wall)

OB

- Curvilinear and Endocavitary probes
- OB exam preset
- Obtain scans of uterus in 2 directions **and** both adnexa to identify all structures in pelvis (and free fluid)
- Obtain stills of uterus for GS, YS, and use m-mode for FHR

Orientation

- Transabdominal: Indicator to pt's right and then pt's head
- Insvaginal to the second secon
- Transvaginal: Indicator to pt's right and then towards ceiling (anterior)

Anatomy

 Transabdominal: Indicator to pt's right and then pt's head

- Objectives
 - Confirm IUP/live IUP
 - Rule out free fluid/ectopic
 - Calculate FHR

 Transvaginal: Indicator to pt's right and then towards ceiling (anterior)

IUP Definition (for our purposes)

- IUP is
 - In the uterus
 - with yolk sac and/or fetal pole
 - GS alone is NOT IUP
- If fetal pole >7 mm, FHR should be visible
- Any concerns=consult OB

Abnormals

Pseudosac mistaken for IUP

If no yolk sac->no IUP

Ectopic mistaken for IUP

 Scan through entire pelvis first to ID all structures

Washington University in St. Louis

- Linear probe (or curvilinear if necessary)
- Venous/vascular preset
- Obtain short axis scans of compression of bilateral femoral and popliteal veins as described below
- Be sure to label!

- Objectives
 - Identify acute proximal DVT in lower extremities
- Limited in patients with prior DVTs

<u>Normal</u>

- •Compress until **complete** collapse of vein
- •Compress q1cm along vein
- •Save a clip of EVERY compression

<u>Thrombus</u>

Non-compressibleCan be hyperechoic

• Compress every 1 cm along path and evaluate branch points

- Washington University in St.Louis SCHOOL OF MEDICINE
- Linear probe
- Ocular or small parts exam preset
- Obtain scans of globe in 2 axes Measure optic nerve sheath diameter (ONSD)
- Objectives
 - ID abnormalities in the posterior chamber
 - Evaluate for increased ICP with ONSD
- Contraindicated in globe rupture

Normal Anatomy (in transverse plane)

Retinal Detachment

- "Worm-like" line of retina in posterior chamber
- Will not cross optic nerve
- does not move w/ ocular movement
- Difficult to differentiate from vitreous detachment with ultrasound alone

Vitreous detachment/hemorrhage

- Floating material in posterior chamber
- Usually moves when eye moves
- Difficult to differentiate from retinal detachment with ultrasound alone

Measure ONSD

- Freeze image of optic nerve deep to globe
- Measure 3 mm posterior to retina
- Measure across optic nerve
- Normal ONSD<5mm

- Linear probe
- Soft tissue/superficial preset
- Obtain scans in sagittal and transverse
- Label area of body and laterality

Objectives

- ID foreign body
- Differentiate abscess from cellulitis

Normal Skin and Soft Tissue

Tissue edema (often cellulitis)

Cobblestoning=fluid in tissue (edema, pus)

Abscess/foreign body

lite 1 ↓ 1.04 cm

Compress for fluctuance Note shadowing deep to FB

Tips

- Use color doppler to help differentiate abscess from lymph nodes
- Evaluate for depth and extension below SF tissue
- "Swirl Sign": Compress with probe to see fluctuance of pus

Bone/Joint

- Linear probe/curvilinear probe
- Soft tissue/superficial preset
- Obtain scans in sagittal and transverse
- Label area of body and laterality

- Objectives
 - ID fracture, tendon/ligament injury
 - Diagnose tenosynovitis

Anisotropy: parallel fibers of tendon best visible at 90°

DRAUP Protocol

It's Faster!

It's just as good as chest X-ray! (evidence based) It reduces wasted minutes, wasted resources!

DRAUP Protocol

It's Faster! It's just as good as chest X-ray! (evidence based) It reduces wasted minutes, wasted resources!

ME 4/5 Chamber

Omniplane: 0° Rotation: None Structures: LA, IAS, RA, TV, RV, IVS, LV, MV Tip: Retroflex to optimize LV apex view

Diagnostic Issues:

- Dilated RV
- Decreased LV systolic function
- MV regurgitation
- Pericardial effusion

Diagnostic Issues:

• RV thrombus

• RV dilation

function

Decreased RV systolic

ME RV In-Out

Omniplane: 60-75° Rotation: R Structures: LA, RA, TV, RV, RVOT, PV, PA, AV Tip: Δ omniplane from ME AV SAX and to get view

Diagnostic Issues:

- Aortic valve disease
- Coronary artery pathology
- CPR Quality –
 Opening of aortic valve

Advance/Withdrawal

Anteflex

Turn Left/Right

Omniplane: 80-100° Rotation: None Structures: LA, MV, LV, coronary sinus, LAA Tip: Retroflex to optimize LV apex view

Omniplane: 30-45°

Structures: LA, IAS, RA,

Tip: Aim to make 3 aortic

8 45 18

ME 2 Chamber/LAA

valve cusps symmetric

Rotation: R

AV

Diagnostic Issues:

- LA appendage
- mass/thrombus
- LV size and function
- MV disease

Retroflex

Omniplane: 100° Rotation: R Structures: LA, RA, SVC, IAS, IVC Tip: Rotate probe right from ME 2 chamber

ME Bicaval

Diagnostic Issues:

- Procedural guidance to confirm catheter placement
- Atrial pathology

Diagnostic Issues:

abnormalities

Ventricular wall motion

LV size and function

Pericardial effusion

• PFO

TG Mid SAX

Advance probe to stomach Omniplane: 0°; Anteflex **Rotation:** None Structures: LV, Papillary muscles, RV, liver Tip: Similar to parasternal short axis

Omniplane: 120-130° Rotation: None Structures: LA, LV, LVOT, AV, MV, RV Tip: Similar to parasternal long axis

Turn Left/Right

Anteflex

Retroflex

ME Dec/Asc Aorta LAX/SAX

Pull back to esophagus Omniplane: $SAX = 0^{\circ}$ Omniplane: LAX = 90° Rotation: L Structures: DescAo

SAX

LAX

- (REBOA) SAX Ao
- **Diagnostic Issues:** • Aortic pathology Aortic dissection Device placement

Omniplane

♥ In each of 4 main views: ask is view adequate & 5 Q's:

Beating? 2 Effusion? 3 LV size/fill/fxn? 4 RV size/fill/fxn? 5 Valves, etc.?

Decide therapeutic mgmt after all 4 views— are they LIV'N?

1. PSL- Parasternal Long

L parasternal border, probe indicator to R shoulder (11 o'clock), drag $2^{nd} \rightarrow 5^{th}$ ICS until

♥ adequate view:

- □ See MV, AV, RV, longitudinal LV chamber.
- Depth: desc. aorta, post. pericardium
- □ LV chamber axis ~ horizontal, not foreshorten
- ♥ TIP: try rotating probe indicator $\sim 20^{\circ}$ → R humerus or chin

♥ 5 Q's:

Washington University in St. Louis

SCHOOL OF MEDICINE

1 Beating?

2 Effusion? Look anterior & posterior: if yes, RV diastolic collapse?

M mode: EPSS- RV size @ MV opening (peak of E wave)

3 LV size/fill/fxn?

Global fxn: look or use M mode. nl EF is:

- 1. EPSS: anterior (top) MV leaflet almost hits septum M mode: thru distal ant. MV leaflet (<0.6cm) EPSS 2cm ≈EF 30%
- 2. LV chamber fractional shortening > 30% M mode: just beyond MV leaflets
- Regional wall motion abnormality: "SALI": Septal- Anterior-Lateral-Inferior

4 RV size/fill/fxn?

nl size = ½ RV, ½ LVOT, ½ LA

5 Valves, etc.? Obvious valve pathology, intracardiac clots...

♥ TRICKY! RV has trabeculae & moderator band

2. PSS – Parasternal short 属

Rotate probe 90º to left from PSL ▼ Adequacy: □ mid papillary level: *mushroom* **1**? **2**? **3** LV—nl EF > 30% Δ in mushroom size Regional wall motion abnormality: SALI 4 RV- v for septal flattening ("D") or bowing in **5** Tilt probe down to scan from base (AV) \rightarrow MV (fish mouth) \rightarrow mid pap \rightarrow apex (\vee for clot)

in 4th -5th ICS, indicator to L (3 o' clock) Start laterally \rightarrow ant chest wall, @ PMI

♥ Adequacy:

4 RV size/fill/fxn?

5?

(L)

□ septum is straight-ish □ see LV inner wall **1**? **2**? **B**LV size/fill/fxn?

1) nl RV size: ¹/₃ RV, ³/₃ LV

Look at LV inner wall movement-

measure above open valves in diastole

4. Sub-xiphoid

♥ adequacy: □ see LV, RV, post.

4 RV size/fill/fxn? 5 Valves, etc.?

pericardium & ideally MV, TV

2) RV fxn: look or M mode: lateral TV annulus

moves $\uparrow \downarrow 2 \text{ cm}$ (TAPSE). TAPSE <1 cm = bad RV

Long: indicator to L, flatten

1 Beating? **2** Effusion? **3** LV size/fill/fxn?

♥ adequacy: □ mid pap (but sideways!)

(4) RV—- V for septal flattening ("D") or

IVC US

♥ Adequacy: □ see hepatic vein, RA inlet

♥ Measure IVC size just after hepatic vein

10

15

20

Aorta, not IV

□ rotate probe to R (confirm not aorta)

1? **2**? **3**LV—nl EF >30% Δ in

Regional wall motion abnormality: SALI

bowing in ♥ TRICKY!: may see RVOT

♥ Sub-xiphoid, indicator to head

or about 2 cm from RA inlet

IVC size (mm) Collapsibility index RA pressure

50%

>50%

<50%

No collapse

mushroom size

5 fan $R \rightarrow L$

<17

>17

Short: indicator \rightarrow head, fan to L

- ♦ LVOT → LV Desc. aorta on L
 - Medial TV annulus

LV vs. RV?

closer to apex

RV < If can't see but outer wall ok, inner wall probably ok

4 View

SIDEBAR: Velocity Time Integral VTI: 18-30 cm = CO of ~5L

1. From 4v., tilt probe up \rightarrow 5 v. Or rotate indicator toward L shoulder/head 3 v □ in 5v.. US beam & LVOT flow must be < 20° 2. Add color doppler

LV

3. Pulse doppler to LVOT flow (max blue)

♥ IVC correlates w/ RAP/CVP Caution use in isolation as surrogate for LV preload—look also at LV function

Morrison's Pouch (FAST)

- Abdominal orientation (left screen dot) Probe indicator toward head or to L
- is there free fluid?
- **1. RUQ** \Box Diaphragm, liver, sup. & inf. pole of kidney
- 2. LUQ
 diaphragm, splenic angle, entire kidney

LUQ

3. Bladder, Transv.& Long.

~5 cm depth below bladder
fan thru entire bladder

Pleural effusion if 1) loss mirror

artifact & 2) spine shadow

continues beyond diaphragm

Aorta

- Abdominal orientation (left screen dot) Probe indicator to left
- Start below xiphoid process. Apply steady, firm pressure
- Adequacy:
 Aorta anterior to spinal shadow
- Scan from proximal aorta to illiac bifurcation
- Transv: measure aortic diameter from outer wall to outer wall (nl < 3 cm)

Pneumothorax

- Adequacy:
 see rib shadow & pleura
- \square ~5 cm depth linear probe \square ~10 cm depth ab probe **R & L Apical Views:** • TIP! Turn gain down
- Probe indicator to head
- Ant. mid-clavicular line, 2nd-3rd ICS Look for
 - 1. Lung slide (comet tails = z lines) w/ each breath

2. **B lines** = line extending down ~10 cm depth. Multiple B lines suggestive of lung pathology- edema, pneumonia, DAH, etc. (1 or 2 ok)

3. Lung pulse = shimmering pleura w/ ea heart beat If 0/3 present, POSSIBLE PTX but...

If see lung point sign, likely PTX

- TIP! Unsure? Use linear probe, apply m-mode
- A lines = horizontal lines have NO significance **RUQ, LUQ views:** *ab probe, same as FAST*

♥♥♥ Use clinical context/pretest probability. Reassess after intervention ♥♥♥

- 1. Is LV fxn nl or hyperdynamic (EF>70%)?
 - YES \rightarrow Not cardiogenic shock, cont. to step 2.
 - NO \rightarrow If decreased EF, consider cardiogenic shock & Stopping IVF, adding ionotropy (after vasopressors!) *Difficult to cont & assess for RV strain (PE) if chronic CHF (LV may not be hyperdynamic because baseline poor function)*

- 2. Is LV hyperdynamic? YES \rightarrow cont IVF \rightarrow step 3
- 3. Is RV big? Is there septal wall flattening ("D") or bowing? YES \rightarrow consider PE if acute $NO \rightarrow RV$ is nl or small, cont. to step 4
- 4. Is there RV diastolic collapse? YES \rightarrow Is there pericardial effusion? YES \rightarrow consider tamponade NO \rightarrow consider PTX NO \rightarrow cont to step 5
- 5. If small/nl RV & hyperdynamic LV, then either hypovolemic or distributive shock & cont IVF, vasopressors
 - ♥ Consider where pt is on Frank-Starling Curve
 - ♥ May use Δ SV = Δ VTI to quantify resuscitation
- **Hypovolemic** Distributive

Obstructive

Washington University in St.Louis

SCHOOL OF MEDICINE

Nerve Blocks

- Lidocaine:
- Lido w/ Epi:
 - : <u>NOT</u> used for nerve blocks Use on superficial wounds when bleeding is a concern

(Laceration repair, abscess I&D, reductions)

- Bupivacaine:
- e: Use when longer pain control is needed Contraindicated in pregnancy

Use for short procedures

Dosing & Pharmacokinetics

	Lidocaine				<u>Lido w/ Epi</u>		<u>Bupivacaine</u>		
Onset	2-5 mins				2-5 mins		15-30 mins		
Duration	30-90 mins				1-3 hrs		4-8 hrs		
Max Dose	4.5 mg/kg				7 mg/kg		2.5 mg/kg		
Concentration		0.5%	1%	2%		1%		0.25%	0.5%
Body Weight	Max Dose	5 mg/mL	10 mg/mL	20 mg/mL		10 mg/mL		2.5 mg/mL	5 mg/mL
10 kg	45 mg	9 mL	4.5 mL	2 mL	70 mg	7 mL	25 mg	10 mL	5 mL
20 kg	90 mg	18 mL	9 mL	4.5 mL	140 mg	14 mL	50 mg	20 mL	10 mL
30 kg	135 mg	27 mL	13.5 mL	6.5 mL	210 mg	21 mL	75 mg	30 mL	15 mL
40 kg	180 mg	36 mL	18 mL	9 mL	280 mg	28 mL	100 mg	40 mL	20 mL
50 kg	225 mg	45 mL	22.5 mL	11 mL	350 mg	35 mL	125 mg	50 mL	25 mL
60 kg	270 mg	54 mL	27 mL	13.5 mL	420 mg	42 mL	150 mg	60 mL	30 mL
70 kg	315 mg	63 mL	31.5 mL	15.5 mL	490 mg	49 mL	175 mg	70 mL	35 mL

• Volumes listed above represent maximum safe doses for a given local anesthetic and patient body weight. Patients >70kg should be treated as 70kg when calculating maximum safe doses.

• Doses are cumulative when performing multiple procedures. (e.g. A 60kg person could safely be given 135mg of Lidocaine for 30kg of body weight and 75mg of Bupivacaine for the remaining 30kg)

- Nebulized Lidocaine: 5mL of 4% solution (200mg or max for ~45kg of body weight).
- Dental blocks: 1.8mL of Bupivacaine 0.5% with Epi. (9mg or max for ~3kg of body weight).
- LET Viscous solution: Lido 4%, Epi 0.05%, and Tetracaine 0.5% (variable absorption).

🐺 Washington University in St.Louis

SCHOOL OF MEDICINE

Nerve Blocks

- Linear Probe
- Nerve setting
- Localize nerve and appropriate landmarks
- In-plane (or long-axis) needle approach
- Instill local anesthetic in fascial plane or around nerve

Basic Setup

Clean vs Sterile Technique:

- Chloraprep a wide area
- Superficial sites: Tegaderm probe cover, sterile gel & gloves
- Deeper sites: Sterile probe cover, gel & gloves

Equipment:

Superficial sites (A)

- 30mL Syringe
- 27g Needle

Deeper sites (B)

- 30mL Syringe
- 3-Way Stopcock
- J-Loop or Extension Tubing
- 22g Spinal Needle
- Extension tubing/J-loop helps keep needle stable but requires a second person
- <u>Anisotropy</u>: The echogenicity of the nerve is relative to the angle of the probe.
 - Always keep the probe at a 90[,] angle to the nerve

LAST

(Local Anesthetic Systemic Toxicity)

<u>Neuro</u>: first with lidocaine Early: tongue & perioral paresthesia, dizziness, tinnitus, restlessness. Then: Muscle twitching heralds the onset of seizur

Then: Muscle twitching heralds the onset of seizures. Last: decreased LOC & apnea.

<u>Cardiac</u>: first with bupivicaine Early: Hypertension & tachycardia. Then: Conduction delays, hypotension, bradycardia. Last: Cardiac arrest.

Treatment:

- Intubation if needed
- Supplemental oxygen, hyperventilation
- IV fluids & pressors if needed
 - Bicarb for severe acidosis.
 - Benzos for seizures.
- Lipid Emulsion Therapy (20% Intralipid):
 - lipidrescue.org
 - Bolus: 1-1.5 mL/kg over 1 min
 - Infusion: 0.25 mL/kg/min over 30-60 mins
- Long-acting agents may require more aggressive support, CPR, or even ECMO.
- Allergic reaction: treatment same as any allergen

St.Louis Washington University in St.Louis

SCHOOL OF MEDICINE

Nerve Blocks: Upper Extremity

